Students’ understandings of multiplication

Vad visar elevers lösningar till olika typer av multiplikativa uppgifter, inom multiplikation med flersiffriga tal och decimaltal, av deras förståelse av multiplikation? Den frågan utforskar Kerstin Larsson i sin avhandling.

Fakta
Disputation

2016-12-12

Titel (eng)

Students’ understandings of multiplication

Författare

Kerstin Larsson

Handledare

Associate professor Kerstin Pettersson, Stockholms universitet Professor Paul Andrews Stockholms universitet

Opponent

Professor Lieven Verschaffel, Katholieke Universiteit, Leuven, Belgium

Institution

Institutionen för matematikämnets och naturvetenskapsämnenas didaktik

Lärosäte

Stockholms universitet

Länkar
Läs hela avhandlingen (pdf)
Läs Skolportens intervju med Kerstin Larsson

Abstract in English:

Multiplicative reasoning permeates many mathematical topics, for example fractions and functions. Hence there is consensus on the importance of acquiring multiplicative reasoning. Multiplication is typically introduced as repeated addition, but when it is extended to include multi-digits and decimals a more general view of multiplication is required.

There are conflicting reports in previous research concerning students’ understandings of multiplication. For example, repeated addition has been suggested both to support students’ understanding of calculations and as a hindrance to students’ conceptualisation of the two-dimensionality of multiplication. The relative difficulty of commutativity and distributivity is also debated, and there is a possible conflict in how multiplicative reasoning is described and assessed. These inconsistencies are addressed in a study with the aim of understanding more about students’ understandings of multiplication when it is expanded to comprise multi-digits and decimals.

Understanding is perceived as connections between representations of different types of knowledge, linked together by reasoning. Especially connections between three components of multiplication were investigated; models for multiplication, calculations and arithmetical properties. Explicit reasoning made the connections observable and externalised mental representations.

Twenty-two students were recurrently interviewed during five semesters in grades five to seven to find answers to the overarching research question: What do students’ responses to different forms of multiplicative tasks in the domain of multi-digits and decimals reveal about their understandings of multiplication? The students were invited to solve different forms of tasks during clinical interviews, both individually and in pairs. The tasks involved story telling to given multiplications, explicit explanations of multiplication, calculation problems including explanations and justifications for the calculations and evaluation of suggested calculation strategies. Additionally the students were given written word problems to solve.

The students’ understandings of multiplication were robustly rooted in repeated addition or equally sized groups. This was beneficial for their understandings of calculations and distributivity, but hindered them from fluent use of commutativity and to conceptualise decimal multiplication. The robustness of their views might be explained by the introduction to multiplication, which typically is by repeated addition and modelled by equally sized groups. The robustness is discussed in relation to previous research and the dilemma that more general models for multiplication, such as rectangular area, are harder to conceptualise than models that are only susceptible to natural numbers.

The study indicated that to evaluate and explain others’ calculation strategies elicited more reasoning and deeper mathematical thinking compared to evaluating and explaining calculations conducted by the students themselves. Furthermore, the different forms of tasks revealed various lines of reasoning and to get a richly composed picture of students’ multiplicative reasoning and understandings of multiplication, a wide variety of forms of tasks is suggested.

 

Sidan publicerades 2016-11-30 12:06 av Susanne Sawander
Sidan uppdaterades 2017-01-25 09:08 av Susanne Sawander


Relaterat

Inlärningssvårigheter i matematik och läsning hänger ihop

Inlärningssvårigheter i matematik och läsning hänger ihop

Sambandet mellan inlärningssvårigheter i matematik och inlärningssvårigheter i läsning är starkare än jag trodde, säger Johan Korhonen. Hans forskning visar också att dessa svårigheter ökar risken för skolavbrott.

Svenska elever har svårt att läsa och förstå matteuppgifter

Svenska elever har svårt att läsa och förstå matteuppgifter

När elever stöter på många ord som de inte känner igen från sina matteböcker, finns det en risk att det är deras läsförmåga som testas istället för deras matematiska förmåga. Det visar Anneli Dyrvolds avhandling.

Konferenser
Magasin Skolporten
Nytt nummer ute 13/9

Nytt nummer ute 13/9

Snart kommer terminens första nummer av magasin Skolporten, som har tema Arbetsmiljö. Är magasinet nytt för dig? Ta del av vårt "prova på"-erbjudande: 2 nummer för 99 kr.

Bli prenumerant
Kommande disputationer
Konferens
Förstelärare 2017

Förstelärare 2017

På Skolportens förstelärarkonferens diskuteras uppdragets utmaningar, möjligheter och framgångsfaktorer samtidigt som vi tar sikte på specifikt viktiga kunskapsområden. Välkommen att inspireras!

Läs mer & boka plats
Lediga tjänster
Fler platsannonser
Konferens
Främlingsfientlighet

Främlingsfientlighet

Ingen elev ska utsättas för främlingsfientlighet eller rasism i skolan, ändå sker det. Vid dessa situationer är all skolpersonal skyldig att agera, men hur görs det på bästa sätt? Varmt välkommen på en konferens där du får möjlighet att stärka dina kunskaper i hur du bemöter rasistiska och främlingsfientliga strömningar i skolan!

Läs mer & boka plats